Theorem 4.14 .For every A [image: image2.png]
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(F) hold the equality 
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PROOF. We will prove this by showing that the column determinant function
det is also a row determinant function. It follows then by Proposition 4.5 that det = [image: image8.png]
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 is obtained from A by a row   



  transformation of type I , that is there exists a [image: image20.png]
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. Then 
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         where the last equality is due Proposition 4.12. Since [image: image38.png]


 [image: image40.png]


 [image: image42.png]SL,



(F) we have   
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(F) and assume that [image: image58.png]


 is obtained from A by multiplying  
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 is the  
  
      diagonal matrix. Then
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          where the last equality is due Proposition 4.12. Since det [image: image76.png]p™
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 = [image: image78.png]


 we  
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 det A

   (3) Clearly det [image: image84.png]


 = 1 is satisfied.
Proposition 4.15. Assume that A is an [image: image86.png]nXn



 matrix over the field F. Then we have every 1 [image: image88.png]LA
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where [image: image93.png]


 denotes the ([image: image95.png]n—1) x(n—1)



-matrix which is obtained from A by leaving away the [image: image97.png]


-th row and [image: image99.png]


-th column
        PROOF. Denote by [image: image101.png]A" = (af)



 the transposed matrix of A. Then [image: image103.png]
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. Using this information and Proposition 4.10 we get
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We can enrich the collection of identities given in Proposition 4.10 and 4.15 by two more identities which are less important but which then combined give a compact formula for matrix inversion.
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