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The Fuzzy Crystallization Algorithm: A New
Approach to Complex Systems Modeling

Chi-Cheng Cheng, Member, IEEE,and Wen-Hsiung Hsieh

Abstract—A new identification method for fuzzy modeling is in-
troduced. Since the method has some analogy with the process of
material crystallization in nature, the name of fuzzy crystalliza-
tion algorithm (FCA) is given to this novel approach. This method
accomplishes structure identification and parameter identification
at the same time, and possesses the properties of simplicity, flexi-
bility, and high calculation speed. Compared with other modeling
strategies, it is easier to construct a model with a specific accuracy.
Numerical examples are provided to demonstrate the performance
of this approach.

Index Terms—Fuzzy logic, fuzzy systems, identification, knowl-
edge acquisition, modeling, parameter estimation.

I. INTRODUCTION

I T IS ALWAYS an important task to establish models of com-
plex processes in the real world. However, in general, it is

not easy to construct a proper mathematical model for engi-
neering purposes. This is the main reason why fuzzy modeling
is popular. In recent years, researchers have proposed a number
of fuzzy modeling techniques to deal with complex, ill-defined,
and uncertain systems. Their studies can be classified into two
directions [1]: the direct approach and the identification ap-
proach.

The direct approach is an implementation from Zadeh’s idea
[2] of extracting the fuzzy model directly from an expert’s
knowledge [3]–[6]. Since these fuzzy modeling techniques
are based solely upon the expert’s description of the system,
and quantitative observations are not specifically used, some
inherent limitations inevitably exist. For example, if the ex-
pert’s knowledge about the system is faulty or incomplete, a
poor model could be obtained. Furthermore, if it is difficult
to acquire the expert’s knowledge directly, model discrepancy
due to indirect approaches may not be easily removed through
these techniques.

The second direction of the fuzzy modeling techniques,
namely the identification approach, is based on an examination
of input–output (I/O) data. In other words, it is the method of
extracting fuzzy rules directly from the quantitative observa-
tions of the system. The identification approach consists of two
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major phases. The first phase is identification of the structure
of the fuzzy model (structure identification), and the second
phase is the estimation of parameter values of the fuzzy model
(parameter identification). There are several methods [7]–[14]
to manage the parameter identification and some other schemes
[15]–[19] to handle the structure identification. There have also
been a number of strategies that can model a system without
a prior expert’s knowledge by successfully combining both
the structure identification and the parameter identification
methods [20]–[24]. However, it is of interest to note that
the structure identification phases always come before the
parameter identification phases in these strategies. Essentially,
in these methods, the second phase (parameter identification)
cannot be started until the first phase (structure identification)
is accomplished. Therefore, this class of methods belongs to the
category of structure-then-parameter identification methods.

In principle, the structure and parameters should be identified
simultaneously, since they have a mutual relationship to, and
influence on, the accuracy of the identified model. Therefore,
the major disadvantage of structure-then-parameter identifica-
tion methods is that the most important rules identified from the
I/O data may not work properly especially when accuracy of the
model is required.

In this paper, a new approach called the fuzzy crystalliza-
tion algorithm (FCA) is developed for identification of a fuzzy
system model. The main reason why this name is chosen is
that the procedures of this method have some analogy with the
processes of crystallization in nature. In general, crystalliza-
tion describes the solidification process of materials from their
liquid state [25], [26]. When the liquid gradually cools, crystal-
lization begins with the formation of solid nuclei, which then
grow by consuming the melt. The processes of nucleation and
crystal growth in material crystallization will be adopted in the
proposed modeling algorithm by establishing “virtual crystals,”
based on specific fuzzy relations, in data space.

To the authors’ knowledge, this method is the first one dealing
with the structure identification and the parameter identification
of a fuzzy system model simultaneously. Hence, this new iden-
tification approach of the fuzzy system model can be treated as
a structure-and-parameter identification method. As compared
with structure-then-parameter identification methods, an advan-
tage of the proposed approach is that it is easier to make sure that
the model will provide a specified accuracy. It is worth men-
tioning that this novel identification method has the virtues of
simplicity, flexible adaptability to complex or multidimensional
systems, and high modeling speed. Moreover, extracting fuzzy
rules from numerical data can be automatically achieved.
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II. CONCEPT OF THEHYPERCRYSTAL

The operation of the FCA is based on the formation of hy-
percrystals. A hypercrystal can be viewed as a volume set in
data space, whose elements possess similar data properties. The
following concepts establish the development of a formed hy-
percrystal.

A. Unit Lattice

Without loss of generality, only the multi-input single-output
system is considered here. Suppose we are given a collection
of data points, which come from an-input one-output
system. The data points are in the dimensional space

: , where
, and and denote the

th input and the output of theth data point, respectively.
We shall restrict the dimensional input space to an
dimensional hypercube where the intervals

, are defined by the ranges of , i.e.,

and

(1)

The hypercube contains the input parts of all the data points.
Furthermore, each interval is discretized into equidistant
segments with a small constant length . Such a discretiza-
tion establishes an dimensional grid which separates the
hypercube into a number of small-dimensional cubic regions,
namely unit lattices. A unit lattice can be represented by

where takes a value from the set
. There are two important

pieces of information associated with each unit lattice, i.e., a
central data point and a set of directional properties.

A central data point of a unit lattice is defined as the data
pair , where , i.e., the
central inputs of the unit lattice. In addition, for any data point

there exists a specific unit lattice that meets the
following condition:

(2)

We say that the data point is contained in the unit
lattice . If the unit lattice consists of data points, the central
output of the unit lattice is set to be the average of the output
of these data points, i.e.,

is contained in

(3)

If equals zero then where is a null set. In the
FCA, a central data point of a unit lattice is used to represent all
the data points within the lattice. For all data points
contained in a unit lattice the following cost function should
reach the minimum:

(4)

B. Directional Properties

The other information in a unit lattice is a set of directional
properties, which describes the data trends for the output. For
the sake of simplicity, a special condition that the central output
is a null set is not examined here, and will be carefully studied
in Section III.

The directional property of a unit lattice, , can be repre-
sented by where is ’s direc-
tional property in the direction of , and is defined as follows.

For a unit lattice and its central output , considering
as a unit vector in theth dimension of the hypercube

If then

If then

otherwise .

Hence, a unit lattice’s directional property in the direction of
is to take an element from the set to represent
the relationships among , , and . Actually,
the directional property presents a qualitative gradient, which
classifies tendency of data samples into three basic categories:

1) increasing;
2) decreasing;
3) constant features.

C. Hypercrystal

Generally speaking, the key to success in complex systems
modeling is to let the data completely and honestly represent all
their characteristics. Using the FCA, the nature of hypercrystals
allows the data to represent information in terms of directional
properties. Given a collection of unit lattices with their central
data points and directional properties, a subset taken from this
collection—namely the hypercrystal—is the basic element for
the proposed modeling approach. The hypercrystal is defined as
follows.

A hypercrystal is an -dimensional cubic space of a
number of -dimensional unit lattices. For all directions

, the directional properties of these unit
lattices should meet one of the following conditions.

1) All of the directional properties are or some are
and all the others are .

2) All of the directional properties are or some are
and all the others are .

3) All directional properties are .

Therefore, for a hypercrystal , its directional property can be
denoted by where is

s directional property in the direction of and should be
equal to or or .

An -dimensional cubic space has a hypercubic shape with
corners. To have a complete description of the hypercrystal

region, at least two of the unit lattices, located at corners of a
hypercrystal, are sufficient for fully characterizing the region
of the hypercrystal. If is a corner unit
lattice, its complementary lattice denotes
the other corner unit lattice in the same hypercrystal with the
condition: . Therefore, the symbol

can be utilized as a representation of the hypercrystal
region.
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Theorem 1: Given a hypercrystal and its region
where for any unit lattice belonging to .

If , then

If , then

If , then

Based on the definitions of directional properties of a unit lat-
tice and a hypercrystal above, it is obvious that the preceding
statements are true.

Theorem 2: For all the corner unit lattices of a hypercrystal,
there is at least one whose central output is a global minimum
and there also exists a global maximum.

Proof: Given a hypercrystal and its region for
any unit lattice belonging to then from Theorem 1

...

therefore

corner unit lattices of

corner unit lattices of

Q.E.D.

Theorem 3: Given a hypercrystal , if there exists a corner
unit lattice whose central output is a global minimum, then
the central point of ’s complement is a global maximum,
and vice versa.

Proof: If is a global minimum and from Theorem 1

...

therefore . Q.E.D.

Fig. 1. Theorem 4.

Fig. 2. Fuzzy rule of a corner unit lattice.

Theorem 4: Given a hypercrystal and is a corner unit
lattice of , if is a global minimum, then for any unit lattice

and , .
Proof: As illustrated in Fig. 1, since , is

also a region of a hypercrystal, namely. Because is a
global minimum in , is a global maximum in . From
Theorem 3

Q.E.D.
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Fig. 3. Zadeh’sS membership function.

D. Formed Hypercrystals

Instead of modeling all the data points at one time, the FCA
tries to get a number of subsets, called hypercrystals, of all of
the data, and attempts to model the data in each hypercrystal.
Since all unit lattices in a hypercrystal own consistent direc-
tional properties, inclinations of data samples in the whole hy-
percrystal region behave similarly. Therefore, all the data in a
hypercrystal can be modeled by approximate interpolation be-
tween the central outputs of all the corner unit lattices. As shown
in Fig. 2, each corner unit lattice can be transformed into an
-input one-output fuzzy rule. Hence, fuzzy rules with

input fuzzy sets are used as the modeling structure of an-di-
mensional hypercrystal.

If is and is and and is

then is

If is and is and and is

then is
...

If is and is and and is

then is

where
th rule;

fuzzy sets;

fuzzy singleton.

The central points of corner unit lattices are chosen as candi-
dates of the fuzzy rules’ outputs.

There are some differences between the fuzzy rules described
above and the others that are broadly used in the field of fuzzy
modeling and control. At first, the input fuzzy sets are in the
form of Zadeh’s -function [27] instead of a simple triangular
function, as depicted in Fig. 3. The main reason why Zadeh’s

-function is selected is that whenever a hypercrystal is given,
one more variable for each input fuzzy set is required for mod-

eling adjustment. As a result, Zadeh’s-function is applied here
and has the following formulation:

(5)

.

(6)

Secondly, it is well known that many kinds of intersection
operations exist for the fuzzy rules. In this paper, only one
is chosen, for the sake of clarity. However, a single type of
intersection is not enough for this proposed fuzzy modeling
method. There are two kinds of corner unit lattice, differenti-
ated by whether its central output is a global extreme or not.
From Theorem 4, it can be concluded that the corner unit
lattice whose central output is a global extreme should be more
important than others. Therefore, two different intersections
for these two kinds of fuzzy rules should be employed. In this
method, an intersection operation (-norm) is adopted from
[28]. The intersection operation can be described by

(7)

where both and are fuzzy sets. From the equation above,
two -norms, and with the condition , are se-
lected for global extremes and nonextremes, respectively, to as-
sign different weights based on their degrees of importance. The
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Fig. 4. Flowchart of the FCA process.

following two specific -norms will be applied for numerical ex-
amples:

In the FCA, a hypercrystal can be modeled by a set of
fuzzy rules with a specific modeling accuracy,. If there are

unit lattices whose central outputs are not null sets in the
hypercrystal, and the following inequality is satisfied, then the
hypercrystal becomes a formed hypercrystal.

and

(8)
where is the output inferred with the input . The
goal of the FCA is to find a collection of formed hypercrystals.
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Fig. 5. Directional properties.

III. PROCEDURES OF THEFCA

The procedures of the proposed modeling method, FCA, gen-
erate a collection of formed hypercrystals from an-dimen-
sional hypercube. All the procedures are shown in the flowchart
of Fig. 4. The details of each step will be described below.

A. Data Arrangement

The first step of the FCA is to arrange the given data points
into a set of orderly central data points of unit lattices. Given a
set of data points ,
where determine an -dimensional hy-
percube which contains the input parts of
all the data points. Then, discretize each intervalinto small
equidistant segments with a fixed length thus obtaining a
collection of unit lattices. For each unit lattice, the central data
point is determined by (3).

In the discretization of the -dimensional hypercube, the
smaller becomes, the more
unit lattices are generated. Consequently, there is a trade-off
between the model’s precision and computational efficiency.

B. Directional Properties of Unit Lattices

In general, there may be some unit lattices without any data
points, and there will be noise contained in the available data
points. Therefore, for practical complex systems modeling,
some extensions of the method of directional properties of unit
lattices have to be developed.

As shown in Fig. 5, instead of considering the relations
among , , and an extended method using the
sequence ,
is proposed for global consideration where is equal to

. Given a specific value depending on
the required modeling accuracy, search through the series

, sequen-
tially. At the beginning, find the first value that is not a null set

in the sequence, for example , and then continue
looking for a series with the following condition:

where (9)

Whenever the search is completed, a series of numbers
are obtained. Hence, the directional properties

can be found by the following algorithm.

If

then

If

then

otherwise

There are always some regions of between regions and
regions and so the problem of crisp boundaries between

hypercrystals is avoided.

C. Directional Properties of Embryos

In the FCA, the formation process of a hypercrystal starts
from a specific unit lattice, called an embryo. The directional
properties of a hypercrystal are determined by the directional
properties of its embryos. Therefore, if a hypercrystalgrows
from an embryo then its directional properties should satisfy

(10)

It is obvious that the directional properties of a hypercrystal
should be determined before the formation. From the definition
of hypercrystals, it is clear that the unit lattice’s directional prop-
erties and play more important roles than in the
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composition of a hypercrystal. Hence, the procedure of setting
the embryos should start from unit lattices without any to
the ones that are all . Once the formed hypercrystals are suf-
ficient to cover all the data points, the procedure stops and the
end of the FCA is reached.

D. Critical Volume of a Hypercrystal

Since there are many embryos that could be formed into hy-
percrystals, the method of obtaining the better ones becomes
substantial. The concept of the critical volume therefore needs
to be introduced.

In the FCA, the volume of a hypercrystal indicates the number
of the unit lattices in the hypercrystal. The larger volume a
formed hypercrystal grows, the better the hypercrystal should
be. The critical volume is the allowable minimum volume of
a hypercrystal in the formation process. If a developing hyper-
crystal cannot build its volume larger than the critical value, then
the hypercrystal fails. Furthermore, in order to have the hyper-
crystals as large as possible, the demanding size of the critical
volume is appointed from the larger to the smaller. Hence, the
minimum number of formed hypercrystals required for mod-
eling will be obtained. The iterations of setting critical volume
stop when there are no embryos left for formation.

E. Process of Formation

The process of formation of a hypercrystal is the most impor-
tant task in the procedures of FCA. A number of variables are
involved in each iteration of formation. They should be initial-
ized at the beginning and include the following.

• Demanded directional properties of embryo .
• Demanded critical volume .
• Growing flag where is the

growing flag in the th extending direction.
• Each fuzzy rule’s output .
• Middle point where is

the second parameter of the fuzzy setdefined in (5) and
(6).

The first two parameters are specified before formation and will
not be changed during the formation process. However, the other
three variables should be initialized and modified during the
procedure of formation. A growing flag is assigned to each ex-
tending direction to indicate whether the extension of the hyper-
crystal in this direction is allowable. If an extension is permitted,
we set its corresponding flag to one, otherwise the flag remains
zero. In addition, the last two parameters represent the resulting
fuzzy rules of the formed hypercrystal.

1) Search for an Embryo:An embryo is a unit lattice with
the following properties.

• Its central output is not a null set.
• It does not belong to any other formed hypercrystals.
• Its directional property is .

From a series of existing embryos, we randomly select one for
the next step of formation. This embryo will not be utilized again
during the iterations for the same demanded critical volume.
Whenever a hypercrystal is formed, the number of the existing
embryos will be reduced. Even if the formation fails, the number
of the existing nontried embryos will still be decreased by one.

Fig. 6. Growing operation.

The iteration of searching embryos will be stopped when the
number of remaining unused embryos becomes zero.

2) Nucleation: Once an embryo is selected, the next pro-
cedure, nucleation, is designed for allowing the embryo to be
developed into a nucleus. A nucleus is a formed hypercrystal
whose volume is just larger than the critical value, i.e., the
smallest acceptable formed hypercrystal with the volume.
The nucleation process is accomplished by combining two
important operations: developing and tuning.

Assume that the region of an-dimensional hypercrystal is
denoted by where , . As shown
in Fig. 6, there are extending directions. For each extending
direction, there is a layer of unit lattices waiting for the exten-
sion. The layer of unit lattices in theth extending direction
is described by where . The developing
operation of is to determine an extending direction via the
growing performance index. However, if all the growing per-
formance indexes are zeros, the developing process is aborted.
The growing performance index in theth extending direction

is determined by examining the following conditions.

1) or .
2) The unit lattice has not be modeled by other hypercrys-

tals.
3) .

The growing performance index can be evaluated by justifying
how good the above conditions are met. If all three situations are
satisfied, the maximum index value should be assigned. Finally,
if the maximum nonzero growing performance index is, then

is added to the hypercrystal. Therefore, after a successful
operation of developing, the hypercrystal’s region will extend
by one layer.

The tuning process is to adjust the parameters to achieve
the aim of (8). In other words, whenever a hypercrystal is
obtained, the fuzzy modeling rules for the hypercrystal are
determined except for the input fuzzy sets’ second parame-
ters and the output singletons

of the fuzzy rules. This is a problem of
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multidimensional minimization. The tuning of an-dimen-
sional hypercrystal minimizes the model error by adjusting the
parameters in the constrained space

and (11)

(12)

where is the th corner unit lattice and is selected by the
user. The downhill simplex method [29] is adopted for this op-
timization application due to its high efficiency. If the statement
of (8) cannot be achieved after many iterations or the simplexes
(all the s and output singletons) leave the constrained space,
then the tuning process stops. In the procedures of the FCA, the
tuning operation consumes most of the calculation time. For-
tunately, the tuning speed will be efficiently fast because the
number of parameters is small and the space for adjusting the
parameters is also limited.

The developing of a hypercrystal starting from an embryo
cannot proceed until the hypercrystal is just larger than the crit-
ical volume . If the nucleation stops due to failure in either the
developing or the tuning, a search for a new embryo is executed.
If the nucleation is successful, a nucleus will be formed and the
next step, growth, will proceed.

3) Growth: The nucleation procedure is followed by the
growth procedure, which is to expand the formed hypercrystal
as much as possible. Actually, the growth of a hypercrystal
is a series of iterations between the operations of growing
and tuning. The growing process is similar to the process
of developing, except that the growing process specifically
indicates the expanding procedure from a formed nucleus. The
region of the nucleus can therefore increase based on similar
approaches described in nucleation. This is the last procedure
of the formation of a hypercrystal and a formed hypercrystal is
now obtained. The modeling process will be fully accomplished
as long as sufficient number of hypercrystals can include all
the data points.

It should be noted that the growing operation (structure
identification) and the tuning action (parameter identification)
are performed alternately in the formation process of a hyper-
crystal. Hence, the proposed modeling method is capable of
performing structure identification and parameter identification
concurrently. This is the reason why this approach is defined as
a structure-and-parameter identification method.

4) Ending: When all the given data points are modeled, the
FCA comes to an end. As a result, a collection of formed hyper-
crystals with some overlay regions along boundaries of adjacent
formed hypercrystals are obtained. The set of formed hypercrys-
tals can therefore be used as a model for those (I/O) data pairs as
shown in Fig. 7 where is the output inferred from the fuzzy
rules of the th formed hypercrystals and is a value defined
by

if then else

IV. NUMERICAL EXAMPLES

A. Box and Jenkins’s Gas Furnace Data

Consider the modeling of a dynamic process given in series
J of Box and Jenkins [30]. This process describes a gas furnace

Fig. 7. Resulting fuzzy model.

TABLE I
FUZZY MODEL OF THEGAS FURNACE SYSTEM

with a single input of the gas flow rate and a single output
of the CO concentration. There are 296 I/O data pairs

which are well known and fre-
quently used as a benchmark example for testing of identifica-
tion algorithms. and are taken as input variables
to produce the output . From these data pairs, an I/O data
set is
established where .

The result of the FCA under the demanded accuracy
is a single formed hypercrystal, as shown in Table I. The

identified model’s mean squared error (MSE) of lead one fore-
cast can be calculated from

(13)

where is the output of the furnace at theth sampling in-
stant and is the output of the model. Simulation results of
the lead one forecast using the identified model are illustrated in
Fig. 8. Since the demanded accuracydefined in (8) is based
on the central output of unit lattices instead of the genuine
output y used in (13), the resulting modeling MSE may appear
to be slightly larger than the demanded accuracy. Table II com-
pares our fuzzy model’s performance with other existing models
identified from the same data. It can be seen that our model
presents encouraging performance. It should also be noted that
the modeling speed and the required intervention from humans
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Fig. 8. Lead-one forecast of the gas furnace model. (Solid: Actual output.
Dashed: Lead-one forecast).

TABLE II
COMPARISON OFOUR MODEL WITH OTHER MODELS

employing the proposed FCA method is less than that of other
modeling approaches.

B. Box and Jenkin’s Yields from a Batch Chemical Process

The series F in [30] is also considered as a typical demonstra-
tion example. It is a time series of 70 consecutive yields from
a batch chemical process. An AR(2) model has been identified
for this time series by Box and Jenkins. Two state space models
were presented in [31] and [32], known as SP1 and SP2, respec-
tively. There was also a recently proposed fuzzy model devel-
oped by Wang and Langari [24].

It is well known that this time series has a high level of
stochasticity which increases the modeling difficulty. However,

TABLE III
FUZZY MODEL OFYIELDS FROM THE BATCH CHEMICAL PROCESS

Fig. 9. Lead-one forecast of the model of yields for the batch chemical process.
(Solid: Actual output. Dashed: Lead-one forecast).

TABLE IV
ERRORCOMPARISON IN MODELING SERIESF

using the proposed FCA approach can effectively eliminate this
problem. One of the advantages of using the FCA modeling
method is that the modeling accuracy can be assigned as re-
quired. Modeling accuracies of most other modeling techniques
can only be obtained after the modeling processes are fully
accomplished.

A fuzzy model of one formed hypercrystal, identified by the
proposed FCA approach, is shown in Table III. Satisfactory
modeling performance is demonstrated by the lead one fore-
cast in comparison with the actual process illustrated in Fig. 9.
Table IV summarizes mean squared errors (MSEs) for Box and
Jenkins’ AR(2) model, Aoki’s SP1 model, Libert, Wang, and
Liu’s SP2 model, Wang and Langari’s fuzzy model, and our
models with different numbers of hypercrystals. It is also con-
firmed that the more accuracy is desired for the model, the more
formed hypercrystals will be obtained by using the FCA.
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Fig. 10. Human operation model for a chemical plant. (Solid: Actual control
action of the human operator. Dashed: Simulated control action).

C. Sugeno and Yasukawa’s Human Operation at a
Chemical Plant

A chemical plant produces a polymer by the polymerization
of some monomers. Since the startup of the plant is very compli-
cated, a human operator has to manually operate the system. The
purpose of this example is to show that the proposed modeling
method has the ability to build a model of a human operator’s
control actions.

The strategy of the human operation is explained in [22].
There are five inputs to which a human operator may refer. They
include the following.

1) Monomer concentration .
2) Change of monomer concentration.
3) Monomer flow rate .
4) Local temperatures inside the plantand .

The output is the set point for monomer flow rate.
There are 70 data points for each of the above six variables

(five inputs and one output) obtained from [21]. The data came
from an operator’s actions in determining the set point for the
monomer flow rate, which will be fed into the plant controlled
by a PID controller. , , and are selected as the input
variables for the FCA method. Consequently, through the pro-
posed modeling method, the resulting fuzzy model consists of
two formed hypercrystals and the performance of our model is
demonstrated in Fig. 10.

V. CONCLUSION

A new approach for complex systems modeling, the FCA, has
been developed. As all the formed hypercrystals are obtained in-
dependently, and the space for parameter identification is small
for the formation of each hypercrystal, the proposed method
has the advantage of high processing efficiency. Furthermore,
this unique modeling strategy, simulating the nature of material
crystallization, provides a strong autonomous modeling feature.
The required user intervention is, therefore, very limited. Be-
sides, the FCA method can guarantee the accuracy of the model
to be within a predetermined tolerance. Remarkable modeling

performance is successfully demonstrated by a number of nu-
merical benchmark examples.

Traditionally, from Yager and Filev’s point of view, “In
general, structure identification is a difficult and extremely
ill-defined process, more an art than science, and not readily
amenable to automated techniques [7].” However, the proposed
method in this paper provides a novel fuzzy modeling technique
which incorporates a built-in automated structure identification
scheme.
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