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The Fuzzy Crystallization Algorithm: A New
Approach to Complex Systems Modeling

Chi-Cheng ChengMember, IEEEand Wen-Hsiung Hsieh

Abstract—A new identification method for fuzzy modelingisin- major phases. The first phase is identification of the structure
troduced. Since the method has some analogy with the process ofof the fuzzy model (structure identification), and the second
material crystallization in nature, the name of fuzzy crystalliza- phase is the estimation of parameter values of the fuzzy model
tion algorithm (FCA) is given to this novel approach. This method identificati Th | thods [71-[14
accomplishes structure identification and parameter identification (parameter identi |Cat|on)._ er(_a ar.e several methods [7]-{14]
at the same time, and possesses the properties of simplicity, flexi-t0 manage the parameter identification and some other schemes
bility, and high calculation speed. Compared with other modeling [15]-[19] to handle the structure identification. There have also
strategies, it is easier to construct a model with a specific accuracy. peen a number of strategies that can model a system without
Numerical examples are provided to demonstrate the performance a prior expert's knowledge by successfully combining both
of this approach. . o . o

the structure identification and the parameter identification
Index Terms—Fuzzy logic, fuzzy systems, identification, knowl- methods [20]-[24]. However, it is of interest to note that

edge acquisition, modeling, parameter estimation. the structure identification phases always come before the
parameter identification phases in these strategies. Essentially,
|. INTRODUCTION in these methods, the second phase (parameter identification)

. . cannot be started until the first phase (structure identification)
TS ALWAYS an important task to establish models of oM accomplished. Therefore, this class of methods belongs to the

tplex prtocessef n tthe real worldihHow?.verl, n %el?iral, it }:Sategory of structure-then-parameter identification methods.
not easy fo construct a proper mathematical model for engi- , principle, the structure and parameters should be identified

neering purposes. This is the main reason why fuzzy modellg ultaneously, since they have a mutual relationship to, and
is popular. In recent years, researchers have proposed a nu ence on, the accuracy of the identified model. Therefore,

of fuzzy modelmg technlque_s to de_al with complex,_||_|-de_f|ne he major disadvantage of structure-then-parameter identifica-
and u_ncertaln SySte'.“S- Their studies can be_class_llfled-mto %i6h methods is that the most important rules identified from the
directions [1]: the direct approach and the identification a5 data may not work properly especially when accuracy of the
proach. . . . . . ,model is required.

The direct gpproach IS an |mpleme_ntat|on from Zadeh’s |dea|n this paper, a new approach called the fuzzy crystalliza-
[2] of extracting the f_uzzy model directly fror_n an exp_ert’s“on algorithm (FCA) is developed for identification of a fuzzy
knowledge [3]-[6]. Since these fuzzy modeling techniqu stem model. The main reason why this name is chosen is
are based solely upon the expert's description of the syst t the procedures of this method have some analogy with the
and quantitative observations are not specifically used, so cesses of crystallization in nature. In general, crystalliza-

mhiz’reEt I|m||t3t|onsb|ne:/|:§ bly e>t<|st. .Fofr e|>t<ampl'e, i th? text'ion describes the solidification process of materials from their
pert's knowledge about the System IS 1aulty or INCOMPIELE, |, iy siate [25], [26]. When the liquid gradually cools, crystal-

poor mpdel could be? obtained. Fur_thermore, if it i_s difficulfiz ation begins with the formation of solid nuclei, which then
to acquire the expert’s knowledge directly, model d|screpan%9

due to indirect h b i dth ow by consuming the melt. The processes of nucleation and
ue to Indirect approaches may not be easily removed trotifqtq) growth in material crystallization will be adopted in the
these techniques.

N . . roposed modeling algorithm by establishing “virtual crystals,”
The second direction of the fuzzy modeling technique ased on specific fuzzy relations, in data space.

9o the authors’ knowledge, this method is the first one dealing

of input—output (I/O) data. In other words, it is the method cWith the structure identification and the parameter identification

extracting fuzzy rules directly from the quantitative observao—f a fuzzy system model simultaneously. Hence, this new iden-

tions of the system. The identification approach consists of MR cation approach of the fuzzy system model can be treated as
a structure-and-parameter identification method. As compared
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[I. CONCEPT OF THEHYPERCRYSTAL B. Directional Properties

The operation of the FCA is based on the formation of hy- The other information in a unit lattice is a set of directional
percrystals. A hypercrystal can be viewed as a volume setfirpperties, which describes the data trends for the output. For
data space, whose elements possess similar data properties tfi&gake of simplicity, a special condition that the central output
following concepts establish the development of a formed hig-a null set is not examined here, and will be carefully studied

percrystal. in Section IIl.
The directional property of a unit lattide, P1*!, can be repre-
A. Unit Lattice sented byP[E! = (piH plE - plE] Whereng1 is L's direc-

Without loss of generality, only the multi-input single-outpufional property in the direction af;, and is[(Lj]efined as follows.
system is considered here. Suppose we are given a collectioffOr @ unit latticel, and its central outpyft™, considering/;
of n data points, which come from asinput one-output &S @ unitvectorin thgth dimension of the hypercube

system. The data points are in tke+ 1 dimensional space If ylE=Usl < ylE] < ylE+U3] thenpl™ = (=)

R’ x R: (X® W) (X® @) . (X™ 4()) where If LUl s B s JIL4U5] thenpts! =

X0 = ((a:(i) 2 ) (a:(i)) anzlla:(i) a(md @) de%ote the . >[Ljy Y b=
= &5 2% &), J Y otherwisep; ™ = (<).

jth input and the output of théth data point, respectively.
We shall restrict thes dimensional input spac®® to an s
dimensional hypercubg x I x --- x I,where the intervals
I;,j = 1,2,..., s are defined by the ranges @157), ie.,
Ij = [.T

Hence, a unit lattice’s directional property in the directior:f

is to take an elementfrom the dét-), (<), (<)} torepresent

the relationships amongZ—:1, ylEl andylE+V51, Actually,
R the directional property presents a qualitative gradient, which
;. x; ] and classifies tendency of data samples into three basic categories:
1) increasing;

2) decreasing;

3) constant features.

Vi=1,2,...,n x§7)<x§z)<x§»+). Q)

The hypercube contains the input parts of all the data points.
Furthermore, each intervd] is discretized intos equidistant
segments with a small constant length:;. Such a discretiza-
tion establishes as dimensional grid which separates the Generally speaking, the key to success in complex systems
hypercube into a number of smaldimensional cubic regions, modeling is to let the data completely and honestly represent alll
namely unit lattices. A unit latticd, can be represented bytheir characteristics. Using the FCA, the nature of hypercrystals
L = (4,1, ...,1,) wherel; takes a value from the setallows the data to represent information in terms of directional
{1,2, ..., (a;](ff) — x;,—))/ij}_ There are two important properties. Given a collection of unit lattices with their central

pieces of information associated with each unit lattice, i.e.,G&ta points and directional properties, a subset taken from this

central data point and a set of directional properties. collection—namely the hypercrystal—is the basic element for
A central data point of a unit lattic® is defined as the data the proposed modeling approach. The hypercrystal is defined as

pair (XUE, ylE), whereX £] = (2" 2l 2"y ie. the follows. . . _ ,

central inputs of the unit lattick. In addition, for any data point A hypercrystal is ans-dimensional cubic space of a

(X, 4®) there exists a specific unit lattide that meets the number of s-dimensional unit lattices. For all directions

C. Hypercrystal

following condition: z;, j = 1,2, ..., s, the directional properties; of these unit
lattices should meet one of the following conditions.
Vi=1,2,...,s a:E” — % Ax; < a:§”> < a:E” —1—% Ax;. (2) 1) All of the directional propertiep; are(—) or some are

o o _ _ _ (—) and all the others arg—).
We say that the data poigf ), 4(V) is contained in the unit ~ 2) All of the directional properties; are(«—) or some are

lattice L. If the unit lattice consists af. data points, the central (<) and all the others arg—).
output of the unit latticg!"! is set to be the average of the output  3) Al directional properties aré—).
of these data points, i.e., Therefore, for a hypercrystdf, its directional property can be
Z (7) denOted byP[H} = (piH}v ng}v R} PiH}) Wherep;{H} iS
ylFl = (X(v,)7 y(z)) is contained inL, m # 0% . H's directional property in the direction af; and should be
m equal to(—) or («) or («).

3) An s-dimensional cubic space has a hypercubic shape with
2° corners. To have a complete description of the hypercrystal
If m equals zero thepl™] = ¢ wheres is a null set. In the region, at least two of the unit lattices, located at corners of a

FCA, a central data point of a unit lattice is used to represent A)Percrystal, are sufficient for fully characterizing the region

the data points within the lattice. For all data poifi?, ()  Of the hypercrystal. 0" = [c1, ¢, ..., ¢;] is a corner unit
contained in a unit latticé the following cost function should 'attice, its complementary lattic® = [c,, &, ..., ¢;] denotes
reach the minimum: the other corner unit lattice in the same hypercrystal with the
) condition:vj = 1,2, ..., s ¢ # ¢;. Therefore, the symbol
Z {y(i) _ y[LJ} ) (4) (C; C) can be utilized as a representation of the hypercrystal

region.

%
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Theorem 1:Given a hypercrystal and its region(C; C)
wherec; < ¢; for any unit latticeL belonging toH.

If p{H} = (=), thenylE+E =] < Lo < yILH=DUS]
< 7J[L] < U[L-I-lf l<... < U[L-I-(Cj—l )lf ]

If p = (<), theny[L-l'(Ca —Ul > > y[L+( DU;]
y[L] > y[L+b ] > . [L+(C_7 —1; )b ]
If p{H} = (o), thenU[LJr(cj—l Wil = ... = ylLH(=DUj]

— U[LJ = ylLtUi] = = oLt E=Y )b J

Based on the definitions of directional properties of a unit lat-

tice and a hypercrystal above, it is obvious that the precedi
statements are true.

Theorem 2: For all the corner unit lattices of a hypercrystal,
there is at least one whose central output is a global minimum

and there also exists a global maximum.
Proof: Given a hypercrystali and its regionC; C) for
any unit latticeL belonging toH then from Theorem 1

min {yuchzz,...,ls)]’ y[@,zz,...,zsn}
< st ] < oy {yucl,zz, L RS ...,m]}
min {y[(m,(:z,lz, e 1)), y[<c1,62,13,...,13)1}

< yllen e 1] < ax {y[@l,% )]y llen, e, ...,zs>1}

min {y[<a,...7as_1,cs>17 y[<a,...7es_1,es>1}

< y[(Eh...,Es,l,zsﬂ

< max {y[<a,...,ag,1,cs)17 y[(a,...,am,ag)1}

therefore

Yl < lnax{ [C]‘ C' € corner unitlattices QH}

gt > mln{ ‘ C € corner unit lattices OH}

Q.E.D.

Theorem 3: Given a hypercrystal, if there exists a corner
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Xz

ng

2

\ 4

unit lattice C whose central output is a global minimum, then

the central point of>’s complemeniC is a global maximum,
and vice versa.
Proof: If yI¢! is a global minimum and from Theorem 1

y[(c17 €2y ey 65)1

Sy[(a’CQ’ wer )] Sy[(a 102y )] .Sy[(51752: - €)]

[(c1 5 €2y ey CS)}
Sy[(EI: €2,y ey €5)] Sy[(zly €2,€3..., C5)] <. Sy[(El,Ez, ey @s)]
y[(c17 €2,y ooy 65)1
Sy[(q,@, ws Cs)] Sy[(EhCZ: <5 Cs )] <. ,Sy[(51,52, - Cs)]
thereforey(©] < {y"1|V ¢ H} < ¢, Q.E.D.

X
@ comner unit lattice C ={c,,¢, ) !
% unit lattice B=[b,,b,}
| ' " -
& unit lattice A=[4,,4,]
comer unit lattice C =[¢,,E, )
I:l hypercrystal H
D hypercrystal H'
Fig. 1. Theorem 4.
e Ar
\
N
<
8
D1
A i
t i > X5
I — i
! fuzzy set &, !
i i
! !
i }
0 L = ¥
E&comer unit lattice C=|[c¢,,c,]
R: if x,is G and x,is ¢ then yis y" =y
Fig. 2. Fuzzy rule of a corner unit lattice.

Theorem 4: Given a hypercrystaH andC is a corner unit
lattice of H, if 41 is a global minimum, then for any unit lattice
A, B € HandB € (C; A, yl€l < yIBl <yl

Proof: As illustrated in Fig. 1, sincel € H, (C; A) is
also a region of a hypercrystal, namée#/. Becausey[“! is a
global minimum inH’, y!!! is a global maximum irH’. From
Theorem 3

C(C;4) oyl ylPl <yl

Q.E.D.
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Fig. 3. Zadeh'sS membership function.

D. Formed Hypercrystals eling adjustment. As aresult, Zadely'sfunction is applied here

Instead of modeling all the data points at one time, the ;:c?:[‘d has the following formulation:
tries to get a number of subsets, called hypercrystals, of all of

the data, and attempts to model the data in each hypercrystal. (0, r <«
Since all unit lattices in a hypercrystal own consistent direc- 1 /z—a\?
tional properties, inclinations of data samples in the whole hy- 2 <m) ) a<z<f
percrystal region behave similarly. Therefore, all the data in &(z; «, 3, v) = ) )
hypercrystal can be modeled by approximate interpolation be- 1 <$ - 7) B<u<ny
tween the central outputs of all the corner unit lattices. As shown 2\pB-v) T
in Fig. 2, each corner unit lattice can be transformed into an L0, x>
s-input one-output fuzzy rule. Hence? fuzzy rules with2s (0, < a
input fuzzy sets are used as the modeling structure cfdin 5 -
mensional hypercrystal. 1_ %7 <”§ — O‘) a<z<p
S(; @, ) = poe 6)
Ryi: If z1isé andzy isé and --- andz, is é; 1 <x_7> , B<z <y
then yisyltl a2 ylet 2. mmes) 2\p-n
L0, T > .

Ro: If z1isé andzs isés and -- - andz, isc,
then yis gyl = yller, ez, 80)] Secondly, it is well known that many kinds of intersection

operations exist for the fuzzy rules. In this paper, only one
is chosen, for the sake of clarity. However, a single type of

Ry.: If zyis¢; andzzisc; and -+ - andz; ise; intersection is not enough for this proposed fuzzy modeling

then yisyl?’] o ¢l 2] method. There are two kinds of corner unit lattice, differenti-

ated by whether its central output is a global extreme or not.

where From Theorem 4, it can be concluded that the corner unit
R; ith rule; lattice whose central output is a global extreme should be more
&, ¢ fuzzy sets; important than others. Therefore, two different intersections

for these two kinds of fuzzy rules should be employed. In this

[7] '
4 fuzzy 'smgleton. ) ) method, an intersection operatiofrnorm) is adopted from
The central points of corner unit lattices are chosen as cangg]_ The intersection operation can be described by

dates of the fuzzy rules’ outputs.

There are some differences between the fuzzy rules described
above and the others that are broadly used in the field of fuzzy %..(a, b)) =1 — min {1, (1-a)*+(1- b)“]l/“} (7)
modeling and control. At first, the input fuzzy sets are in the
form of Zadeh’sS-function [27] instead of a simple triangularwhere botha andb are fuzzy sets. From the equation above,
function, as depicted in Fig. 3. The main reason why Zadehiso ¢-norms,i.; andi,. with the conditionwl > w2, are se-
S-function is selected is that whenever a hypercrystal is givdected for global extremes and nonextremes, respectively, to as-
one more variable for each input fuzzy set is required for modign different weights based on their degrees of importance. The
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v

[ Arrange data points ’
v

Determine all unit lattices'
directional properties

v
Set embryo's directional properties

»
4
Set critical volume V |

>

i \
> Select one embryo E randomly
v

Nucleation

Set next embryo's
directional properties

K
The process of
Set smaller Growth formation
critical volume
v 2
1 Get a formed hypercrystal
N

Any other
existing embryo has

Any other
existing embryo ?

Modeling complete?

C End D

Fig. 4. Flowchart of the FCA process.

following two specifict-norms will be applied for numerical ex- m unit lattices whose central outputs are not null sets in the
amples: hypercrystal, and the following inequality is satisfied, then the
hypercrystal becomes a formed hypercrystal.

w1 = min(a, b) wl — o0 . )
I 3 I I
max(0, a+b—1) w2 =1 {EZ(yH_f(X[ ]))‘LeHandy[];&/)}g@
N (8)
In the FCA, a hypercrysta can be modeled by a set ofwhere f(X[]) is the output inferred with the input!Zl, The
fuzzy rules with a specific modeling accura€y, If there are goal of the FCA is to find a collection of formed hypercrystals.

12
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Fig. 5. Directional properties.
ll. PROCEDURES OF THEFCA in the sequence, for exampj&-+(@1=1)Y1 and then continue

The procedures of the proposed modeling method, FCA, gé%gklng for a seriegas, asg, ...) with the following condition:

erate a collection of formed hypercrystals from @dimen- [L4(a; =1)U;]  , [E+(a;_1—1;)U;]
) . Yy Yy >h
sional hypercube. All the procedures are shown in the flowchart .
of Fig. 4. The details of each step will be described below. where i =2,3,.... ©)
Whenever the search is completed, a series of numbers
A. Data Arrangement a1, as, as, ... are obtained. Hence, the directional properties

The first step of the FCA is to arrange the given data pointsin be found by the following algorithm.
into a set of orderly central data points of unit lattices. Given a
set ofn data pointg X (1, »1)), (X @) y@) . (X0 4
whereX = (x1, z2, ..., ;) determine ars-dimensional hy-
percubel; x I» x --- x I, which contains the input parts of then p[L+(ai—Ij)L’j1 p[p+(ai+l_1j)uvj1 — (=)

; 3 ) i _ ; s P
all the data points. Then, discretize each intefyainto small ) )
equidistant segments with a fixed lengMx; thus obtaining a  If  ylEt (@i =)Ul 5 g lE+(ai=t) U]

y[’1+(0w'—1—lj)Uj] < y[’1+(”w'—lj)Uj1

< y[L+(ai+1*1j)Uj1 < y[L+(ai+2*1j)Uj]

collection of unit lattices. For each unit lattice, the central data > yllttain=G)UsT o o (Lt (aire—15)U;]
point is determined by (3). then p£r1+(a,;_rj)oyj]7 7p£rl+(a,;+1_rj)o,j] — ()

In the discretization of thes-dimensional hypercube, the
sm_aller_AX = (Azy, Az, ..., Az,) becomes, _the more  ,iherwise pBL+(af—Ij)lf’j1
unit lattices are generated. Consequently, there is a trade-off
between the model’s precision and computational efficiency. There are always some regiong ef ) betweer(— ) regions and

(«) regions and so the problem of crisp boundaries between

B. Directional Properties of Unit Lattices hypercrystals is avoided.

In general, there may be some unit lattices without any data pjrectional Properties of Embryos
points, and there will be noise contained in the available dataI he FCA. the f . fah |
points. Therefore, for practical complex systems modelinﬁ, n the , the formation process of a hypercrystal starts

some extensions of the method of directional properties of uffie™ @ SPecific unit lattice, called an embryo. The directional

lattices have to be developed. propert?es of_a hypercrystal are dete.rmined by the directional
As shown in Fig. 5, instead of considering the relatiof&/OPerties of its embryos. Therefore, if a hypercrysfagrows
amongy!Z=Us1, yIL1 “andy[E+Us] an extended method using thdrom an embryat then its directional properties should satisfy
sequence (y[L+(—lj)Uj1' y[L'F(l—lj)l’Yj}7 R y[L'i'(mj—lj)Uj})
is proposed for global consideration where; is equal to
(x§+) — xE_))/ij. Given a specific valué depending on It is obvious that the directional properties of a hypercrystal
the required modeling accuracy, search through the sergmuld be determined before the formation. From the definition
(AU B+ A=)V [L+(ms =L)UY sequen- of hypercrystals, itis clear that the unit lattice’s directional prop-
tially. At the beginning, find the first value that is not a null seerties(— ) and(«) play more important roles thar-) in the

L+(a; 1—[_7' Uj
Ry ()

Vi=1,2...,s pi=pl (10)
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composition of a hypercrystal. Hence, the procedure of settir, 4
the embryos should start from unit lattices without day) to ~ ~
the ones that are gl~). Once the formed hypercrystals are suf:
ficient to cover all the data points, the procedure stops and t
end of the FCA is reached.

D. Critical Volume of a Hypercrystal

Since there are many embryos that could be formed into h
percrystals, the method of obtaining the better ones becorr
substantial. The concept of the critical volume therefore nee
to be introduced.

Inthe FCA, the volume of a hypercrystal indicates the numb
of the unit lattices in the hypercrystal. The larger volume . o
formed hypercrystal grows, the better the hypercrystal shou v
be. The critical volume is the allowable minimum volume of
a hypercrystal in the formation process. If a developing hype
crystal cannot build its volume larger than the critical value, the
the hypercrystal fails. Furthermore, in order to have the hype.
crystals as large as possible, the demanding size of the critiﬁal . )

. . 1g. 6. Growing operation.
volume is appointed from the larger to the smaller. Hence, t

minimum number of formed hypercrystals required for mod- ) ) )
eling will be obtained. The iterations of setting critical volumd N€ iteration of searching embryos will be stopped when the

A\ 4

ey the extending directions

stop when there are no embryos left for formation. number of remaining unused embryos becomes zero.
2) Nucleation: Once an embryo is selected, the next pro-
E. Process of Formation cedure, nucleation, is designed for allowing the embryo to be

developed into a nucleus. A nucleus is a formed hypercrystal

The process of formation of a hypercrystal is the mOStlmpovrv'hose volume is just larger than the critical value, i.e., the

tant task in the procedures of FCA. A number of variables a :
involved in each iteration of formation. They should be initialgﬁqa"es'[ acceptable formed hypercrystal with the volume

. I . . The nucleation process is accomplished by combining two
ized at the beginning and include the following. important operations: developing and tuning.

* Demanded directional properties of embiyb”. Assume that the region of andimensional hypercrystdf is

* Demanded critical volum#'. _ denoted by C; C) wherec; < &;,j =1, 2, ..., s. As shown

* Growing flag¥ = (41, 12, ..., ¥2,) Whered; is the iy Fig. 6, there ar@s extending directions. For each extending
growing flag in theith extending direction. direction, there is a layer of unit lattices waiting for the exten-

* Each fuzzy rule’s outputyl'], 41, ..., 7). sion. The layer of unit lattices in thiéh extending direction

* Middle point (81, 1, B2, B2, ..., Bs, B,) WhereS; is s described by2; wherei = 1,2, ..., 2s. The developing
the second parameter of the fuzzy &etlefined in (5) and  gperation ofH is to determine an extending direction via the
(6). growing performance index. However, if all the growing per-
The first two parameters are specified before formation and Wilrmance indexes are zeros, the developing process is aborted.
not be changed during the formation process. However, the oth@le growing performance index in thith extending direction
three variables should be initialized and modified during thg is determined by examining the following conditions.
procedure of formation. A growing flag is assigned to each ex- 1) plH — p[m orpm = (o).
tending direction to indicate whether the extension of the hyper- 2) The unif latticel. has not be modeled by other hypercrys-
crystal in this direction is allowable. If an extension is permitted, tals.
we set its corresponding flag to one, otherwise the flag remains3) yll £ ¢,
zero. In addition, the last two parameters represent the resul
fuzzy rules of the formed hypercrystal.
1) Search for an EmbryoAn embryo is a unit lattice with
the following properties.

uﬂwc]e growing performance index can be evaluated by justifying

how good the above conditions are met. If all three situations are
satisfied, the maximum index value should be assigned. Finally,
i if the maximum nonzero growing performance indegisthen

* lts central output is not a null set. Q. is added to the hypercrystal. Therefore, after a successful

* It does not belong to any other formed hypercrystals.  qheration of developing, the hypercrystal’s region will extend

« Its directional property ig[¥l, by one layer.

From a series of existing embryos, we randomly selectone forthe tuning process is to adjust the parameters to achieve
the next step of formation. This embryo will not be utilized agaithe aim of (8). In other words, whenever a hypercrystal is
during the iterations for the same demanded critical volumebtained, the fuzzy modeling rules for the hypercrystal are
Whenever a hypercrystal is formed, the number of the existidigtermined except for the input fuzzy sets’ second parame-
embryos will be reduced. Even if the formation fails, the numbeers (31, 5;, B2, B, ---, Bs, 3,) and the output singletons
of the existing nontried embryos will still be decreased by ongyl!l, 4121 ..., 41?']) of the fuzzy rules. This is a problem of
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multidimensional minimization. The tuning of asrdimen-
sional hypercrystal minimizes the model error by adjusting tt
parameters in the constrained space

aj < By <y and ay < Bj <7 (11) v
. ; ) S Gixxs)
(y[CJ _ Ay) < y[d < (y[CJ —i—Ay) (12) mz":— [
X i=|Ki
whereC; is theith corner unit lattice and\y is selected by the — x
user. The downhill simplex method [29] is adopted for this of .
timization application due to its high efficiency. If the statemer .

of (8) cannot be achieved after many iterations or the simplex
(all the #s and output singletons) leave the constrained spa
then the tuning process stops. In the procedures of the FCA,
tuning operation consumes most of the calculation time. Fc
tunately, the tuning speed will be efficiently fast because the
number of parameters is small and the space for adjusting i@ 7. Resulting fuzzy model.
parameters is also limited.

The developing of a hypercrystal starting from an embryo TABLE |
cannot proceed until the hypercrystal is just larger than the crit- FuzzYy MODEL OF THE GAS FURNACE SYSTEM
ical volumeV . If the nucleation stops due to failure in either the
developing or the tuning, a search for a new embryo is execute Formed hypercrystal H,, P ={(-),(o)},

If the nucleation is successful, a nucleus will be formed and tr

- 1 4
next step, growth, will proceed. b = =

3) Growth: The nucleation procedure is followed by the R, 5(44.05,5639,6185) §(-2975,-1055,2925) 57.04
growth procedure, which is to expand the formed hypercryst ~
as much as possible. Actually, the growth of a hypercryst: #  5(4405,5639,6185) §(=2975,~1161,2925) 46.01
is a series of iterations between the operations of growir & 5(4405,5570,6185) 5(_2975,1055,2925) 60.73

and tuning. The growing process is similar to the proces

of developing, except that the growing process specificall &, 5(44.05,55.70,6185) 5(-2975,-1161,2925) 60.20
indicates the expanding procedure from a formed nucleus. TI
region of the nucleus can therefore increase based on similar

approaches described in nucleation. This is the last procedur . : .
of the formation of a hypercrystal and a formed hypercrystaé%'?n a single inputu(¢) of the gas flow rate and a single output

now obtained. The modeling process will be fully accomplish t) of the CG_concentration. There are 296 1/O data pairs
as long as sufficient number of hypercrystals can include a(t), ¥(t) It = 1,2, ..., 296} which are well known and fre-
the data points. quently u_sed as a benchmark example for tes_tlng of |d_ent|flca-
It should be noted that the growing operation (structuf¥n @lgorithmsy(#—1) andu(t—4) are taken as input variables
identification) and the tuning action (parameter identificatiorf Produce the outpui(t). From these data pairs, an I/O data
are performed alternately in the formation process of a hypét {(X(5), 4(5)), (X(6), ¥(6)), ..., (X(296), y(296))} is
crystal. Hence, the proposed modeling method is capable@stablished wherd&' (i) = {u(i — 4), y(i — 1)}.
performing structure identification and parameter identification The result of the FCA under the demanded accukacy
concurrently. This is the reason why this approach is defined@&445 is a single formed hypercrystal, as shown in Table I. The
a structure-and-parameter identification method. identified model's mean squared error (MSE) of lead one fore-
4) Ending: When all the given data points are modeled, theast can be calculated from
FCA comesto an end. As aresult, a collection of formed hyper- 906
crystals with some overlay regions along boundaries of adjacent J— 1 Z (k) — ﬁ(k)]Q (13)
formed hypercrystals are obtained. The set of formed hypercrys- 292 — ‘
tals can therefore be used as a model for those (I/O) data pairs as =
shown in Fig. 7 wheréy, is the output inferred from the fuzzywherey(k) is the output of the furnace at thgh sampling in-
rules of theith formed hypercrystals and is a value defined stant andj(k) is the output of the model. Simulation results of
by the lead one forecast using the identified model are illustrated in
Fig. 8. Since the demanded accur&tylefined in (8) is based
on the central output of unit latticeé™! instead of the genuine
output y used in (13), the resulting modeling MSE may appear
IV. NUMERICAL EXAMPLES to be slightly larger than the demanded accuracy. Table Il com-
pares our fuzzy model’s performance with other existing models
identified from the same data. It can be seen that our model
Consider the modeling of a dynamic process given in seripeesents encouraging performance. It should also be noted that
J of Box and Jenkins [30]. This process describes a gas furnéte modeling speed and the required intervention from humans

if XeH, then x;,=1 else x; =0.

A. Box and Jenkins’s Gas Furnace Data
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62 . . , . ; TABLE I
6 Fuzzy MODEL OF YIELDS FROM THE BATCH CHEMICAL PROCESS
18 N
58| b | Formed hypercrystal H,, pith} o {(e), (<)}
58] | IVIT ] X * y
54| y ) i R, 5(23,44.82,80) 5(23,7411,80) 67.05
- N
™ 52| / C ' \; i R, 5(23,4482,80) §(23,2692,80) 52.12
500 £ ' \ i R, §(23,56.31,80) 5(23,7411,80) 51.02
48! ] R, 5(23,56.31,80) 5(23,2692,80) 35.46
46| i
44 . , , | |
0 50 100 150 200 250 300 80 . , , , , .
Fig. 8. Lead-one forecast of the gas furnace model. (Solid: Actual outpu 0L b
Dashed: Lead-one forecast).
60| i B
. i )
TABLE 1l " !
COMPARISON OFOUR MODEL WITH OTHER MODELS < 50 .
> r "
Model Name Inputs Number of Rules Me;r;riguared "," \ ,‘I
40 '
. »t-1) i
Tong's model [9] u(t—4) 19 0.469
Pedrycz's model y-1
113] u(t—4) 81 0.320 300
Xu y@-1)
u’s model [14] 25 0.328
u(t—4) 20
»it-1 0 10 20 30 40 50 60 70
Wt =-2) K
Box's model [30] u(t —3) - 0.202
t—4 ) . .
Z((t _5; Fig.9. Lead-one forecast of the model of yields for the batch chemical process.
JG-D (Solid: Actual output. Dashed: Lead-one forecast).
y(t-2)
Sugeno's model y(-3)
2 0.068
[21] u(t -1) TABLE IV
u(t —-2) ERROR COMPARISON IN MODELING SERIESF
u(t-3)
, y-1) AR2 SP1 SP2 F del Ourmodel  Our model
Suge[r;; model w(t -3) 6 0.190 uzzy mode n*=1 n=>5
ut—4) Meansquared 11380 114.44 11430  96.75 114.30 72.25
Wang's model ye-1 0.158 grror
[24] u(t-4) 5 -15 * n : number of formed hypercrystals
-1
Our model (FCA) Z ((:_ 4; 4 0.146
using the proposed FCA approach can effectively eliminate this

problem. One of the advantages of using the FCA modeling
Pthod is that the modeling accuracy can be assigned as re-

uired. Modeling accuracies of most other modeling techniques
can only be obtained after the modeling processes are fully
accomplished.

A fuzzy model of one formed hypercrystal, identified by the
The series F in [30] is also considered as a typical demonstpgeposed FCA approach, is shown in Table lll. Satisfactory
tion example. It is a time series of 70 consecutive yields fromodeling performance is demonstrated by the lead one fore-
a batch chemical process. An AR(2) model has been identifiedst in comparison with the actual process illustrated in Fig. 9.
for this time series by Box and Jenkins. Two state space modééble IV summarizes mean squared errors (MSESs) for Box and

were presented in [31] and [32], known as SP1 and SP2, respdenkins’ AR(2) model, Aoki's SP1 model, Libert, Wang, and
tively. There was also a recently proposed fuzzy model devéiu’s SP2 model, Wang and Langari’s fuzzy model, and our
oped by Wang and Langari [24]. models with different numbers of hypercrystals. It is also con-
It is well known that this time series has a high level ofirmed that the more accuracy is desired for the model, the more
stochasticity which increases the modeling difficulty. Howeveformed hypercrystals will be obtained by using the FCA.

employing the proposed FCA method is less than that of othrEI
modeling approaches.

B. Box and Jenkin’s Yields from a Batch Chemical Process
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performance is successfully demonstrated by a number of nu-
merical benchmark examples.

Traditionally, from Yager and Filev's point of view, “In
general, structure identification is a difficult and extremely
ill-defined process, more an art than science, and not readily
amenable to automated techniques [7].” However, the proposed
method in this paper provides a novel fuzzy modeling technique

3000,

2000L

10001

(1]
0 : , . . , .

10 20 307 40 50 60 70 2]
K

Fig. 10. Human operation model for a chemical plant. (Solid: Actual control [3]
action of the human operator. Dashed: Simulated control action).

[4]
C. Sugeno and Yasukawa’s Human Operation at a
Chemical Plant 5]

A chemical plant produces a polymer by the polymerization
of some monomers. Since the startup of the plant is very compli{e]
cated, a human operator has to manually operate the system. The
purpose of this example is to show that the proposed modeling
method has the ability to build a model of a human operator’s(7]
control actions. .

The strategy of the human operation is explained in [22].
There are five inputs to which a human operator may refer. They[9]
include the following.

1) Monomer concentration; .

2) Change of monomer concentration (10]
3) Monomer flow rateus. [11]
4) Local temperatures inside the plantandu;.

(12]

The outputy is the set point for monomer flow rate.
There are 70 data points for each of the above six variablggs)
(five inputs and one output) obtained from [21]. The data came
from an operator’s actions in determining the set point for thd4
monomer flow rate, which will be fed into the plant controlled
by a PID controllera,, u», andus are selected as the input [15]
variables for the FCA method. Consequently, through the prog,
posed modeling method, the resulting fuzzy model consists of
two formed hypercrystals and the performance of our model is
demonstrated in Fig. 10. 17
(18]

V. CONCLUSION [19]

A new approach for complex systems modeling, the FCA, has
been developed. As all the formed hypercrystals are obtained if0l
dependently, and the space for parameter identification is small
for the formation of each hypercrystal, the proposed methog1]
has the advantage of high processing efficiency. Furthermore,
this unique modeling strategy, simulating the nature of material,,
crystallization, provides a strong autonomous modeling feature.
The required user intervention is, therefore, very limited. Be{23]
sides, the FCA method can guarantee the accuracy of the modsg},
to be within a predetermined tolerance. Remarkable modeling

which incorporates a built-in automated structure identification
scheme.

REFERENCES

R. R. Yager and D. P. Filestssentials of Fuzzy Modeling and Con-
trol.  New York: Wiley, 1994.

L. A. Zadeh, “Outline of a new approach to the analysis of complex
systems and decision processéEEE Trans. Syst., Man, Cyberwol.
SMC-3, pp. 28-44, Jan. 1973.

E. H. Mamdani and S. Assilian, “An experiment in linguistic synthesis
with a fuzzy logic controller,'Int. J. Man—Mach. Stugdvol. 7, no. 1, pp.
1-13, 1975.

E. H. Mamdani, “Application of fuzzy algorithms for control of simple
dynamic plant,'Proc. Inst. Elect. Engvol. 121, no. 12, pp. 1585-1588,
1974.

E. H. Mamdani and N. Baaklini, “Prescriptive method for deriving con-
trol policy in a fuzzy logic control,’Electron. Lett. vol. 11, no. 25/26,
pp. 625-626, 1975.

L. P. Holmblad and J.-J. Ostergaard, “Control of a cement kiln by fuzzy
logic,” in Fuzzy Information and Decision Processks M. Gupta and

E. Sanchez, Eds. Amsterdam, The Netherlands: North-Holland, 1982,
pp. 389-399.

R. R. Yager and D. P. Filev, “Template based fuzzy systems modeling,”
J. Intell. Syst.vol. 2, pp. 39-54, 1994.

R. M. Tong, “Synthesis of fuzzy models for industrial processes—Some
recent results,Int. J. Gen. Systvol. 4, no. 3, pp. 143-163, 1978.

——, “The construction and evaluation of fuzzy models,’Advances

in Fuzzy Set Theory and Applicatiom. M. Gupta, R. K. Ragade, and
R.R.Yager, Eds. Amsterdam, The Netherlands: North-Holland, 1979,
pp. 559-576.

B. Kosko,Neural Networks and Fuzzy System&nglewood Cliffs, NJ:
Prentice-Hall, 1992.

——, “Fuzzy associative memory systems,”kuzzy Expert Systems
A. Kandel, Ed. Boca Raton, FL: CRC, 1991, pp. 135-162.

W. Pedrycz, “Identification in fuzzy systemdEEE Trans. Syst., Man,
Cybern, vol. SMC-14, pp. 361-366, Mar./Apr. 1984.

——, “An identification algorithm in fuzzy relational systems;tizzy
Sets Systvol. 13, no. 2, pp. 153-167, 1984.

C. W. Xu and Y. Z. Lu, “Fuzzy model identification and self-learning
for dynamic systems,[EEE Trans. Syst., Man, Cyberwol. SMC-17,

pp. 683—-689, July/Aug. 1987.

J. C. BezdekPattern Recognition with Fuzzy Objective Function Algo-
rithms  New York: Plenum, 1981.

E. H. Ruspini, “Recent developments in fuzzy clustering,Firzzy Set
and Possibility TheoryR. R. Yager, Ed. New York: Pergamon, 1982,
pp. 133-147.

1 D. Dubois, H. Prade, and C. Testemale, “Weighted fuzzy pattern

matching,”Fuzzy Sets Systiol. 28, no. 3, pp. 313-331, 1988.

M. Sugeno and G. T. Kang, “Structure identification of fuzzy model,”
Fuzzy Sets Systiol. 28, no. 1, pp. 15-33, 1988.

R. R. Yager and D. P. Filev, “Approximate clustering via the mountain
method,”IEEE Trans. Syst., Man, Cyberrol. 24, pp. 1279-1284, Aug.
1994.

—, “Unified structure and parameter identification of fuzzy models,”
IEEE Trans. Syst., Man, Cybernol. 23, pp. 1198-1205, July/Aug.
1993.

M. Sugeno and K. Tanaka, “Successive identification of a fuzzy model
and its applications to prediction of a complex systefuZzy Sets Syst.
vol. 42, no. 3, pp. 315-334, 1991.

] M. Sugeno and T. Yasukawa, “A fuzzy-logic-based approach to qualita-

tive modeling,”IEEE Trans. Fuzzy Systol. 1, pp. 7-31, Feb. 1993.

D. P. Filev, “Fuzzy modeling of complex systembjt. J. Approx. Reas.
vol. 5, no. 3, pp. 281-290, 1991.

L. Wang and R. Langari, “Complex systems modeling via fuzzy logic,”
IEEE Trans. Syst., Man, Cybern, #l. 26, pp. 100-106, Feb. 1996.



CHENG AND HSIEH: FUZZY CRYSTALLIZATION ALGORITHM

(25]
(26]
[27]
(28]
[29]
(30]
(31]

(32]

D. A. Brandt, Metallurgy Fundamentals South Holland, IL: Good-
heart-Willcox, 1985, pp. 122-131.

P. HaaserPhysical Metallurgy3rd ed. Cambridge, U.K.: Cambridge
Univ. Press, 1996, pp. 60—-64.

L. A. Zadehet al, Fuzzy Sets and Their Application to Cognitive an
Decision Processes New York: Academic, 1975.

R. R. Yager, “On a general class of fuzzy connectivesiZzy Sets Syst.
vol. 4, no. 3, pp. 235-242, 1980.

J. A. Nelder and R. Mead, “A simplex method for function minimiza
tion,” Comput. J.vol. 7, pp. 308-313, Jan. 1965.

G. E. P. Box and G. M. Jenkinjme Series Analysis: Forecasting and
Control, 2nd ed. San Francisco, CA: Holden-Day, 1976.

M. Aoki, State Space Modeling of Time SeriedNew York: Springer-
Verlag, 1983.

G. Libert, L. Wang, and B. Liu, “An innovation state space approach for
time series forecastingJ: Time Series Analol. 14, no. 6, pp. 589-601,
1993.

Chi-Cheng Cheng (M’87) was born in Taipei,
Taiwan, R.O.C., in 1959. He received the B.S. and
M.S. degrees in power mechanical engineering from
National Tsing Hua University, Hsinchu, Taiwan, in
1981 and 1983, respectively, and the Sc.D. degree
in mechanical engineering from Massachusetts
Institute of Technology, Cambridge, MA, in 1991.

He s currently an Associate Professor with the De-
partment of Mechanical and Electro-Mechanical En-
gineering, National Sun Yat-Sen University, Kaoh-
siung, Taiwan, R.O.C. His research interests are in

the areas of system dynamics and control, visual servo, fuzzy modeling and
control, and telerobotics.

901

Wen-Hsiung Hsieh was born in Taiwan, R.O.C.,
in 1972. He received the B.S. and M.S. degrees
from National Sun Yat-Sen University, Kaohsiung,
Taiwan, R.O.C., both in mechanical engineering, in
1994 and 1996, respectively.

Since 1998, he has been an Engineer with Alcatel
Taiwan, Kaohsiung.



