(1)	$\left[P_{\text {obs }}+\mathrm{a}\left(\frac{\mathrm{n}}{\mathrm{v}}\right)^{2}\right][\mathrm{V}-\mathrm{b}]=\mathrm{nRT}$ (van der Waals equation) (a)Explain the meaning of the first term, $\left[\mathrm{P}_{\mathrm{obs}}+\mathrm{a}\left(\frac{\mathrm{n}}{\mathrm{v}}\right)^{2}\right]$. (b)Why is the "a" for $\mathrm{NH}_{3}\left(4.2 \mathrm{~atm} \cdot \mathrm{~L}^{2} / \mathrm{mol}\right)$ larger than $\mathrm{N}_{2}\left(1.4 \mathrm{~atm} \cdot \mathrm{~L}^{2} / \mathrm{mol}\right)$?
(2)	(a) Propose a method to prepare an acid-base buffer soluteon. (b) A weak acid solution, HA , is titrated with 30.0 mL of 0.1 M NaOH to reach the end point. Then, 10.0 mL of 0.1 M HCl is added and the pH of the solution is measured to be 5.0. Calculate the pK_{a} of the HA.
(3)	For the process $\mathrm{B}_{2} \mathrm{O}_{(s)} \rightarrow \mathrm{B}_{2} \mathrm{O}_{(l)}$, $\Delta \mathrm{H}^{\circ}=4000 \mathrm{~J} \cdot \mathrm{~mol}^{-1}, \Delta \mathrm{~S}_{\text {univ }}=-1.0 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$ Calculate $\Delta \mathrm{S}^{\circ}$ and $\Delta \mathrm{G}^{\circ}$ at $27{ }^{\circ} \mathrm{C}$.
(4)	For $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}\left(27{ }^{\circ} \mathrm{C}\right)$, assuming that $\Delta \mathrm{G}=-21.9 \mathrm{KJ}^{-1} \cdot \mathrm{~mol}^{-1}$ at $\left[\mathrm{H}_{2}\right]=\left[\mathrm{N}_{2}\right]=1.0 \mathrm{~atm}$ and $\left[\mathrm{NH}_{3}\right]=10 \mathrm{~atm}$, calculate the $\ln \mathrm{K}$ (K : equilibrium constant).
(5)	(a) A concentration cell contains a copper electrode and aqueous copper nitrate in both compartments, with $\left[\mathrm{Cu}^{2+}\right]=0.1 \mathrm{M}$ and $\left[\mathrm{Cu}^{2+}\right]=1.0 \mathrm{M}$ respectively. Calculate the cell-potential $\left(25^{\circ} \mathrm{C}\right)$. (b) Write down the electron configuration foe Cu and Cu^{2+}
(6)	$\mathrm{Cu} 2++2 e^{-} \rightarrow \mathrm{Cu} \quad \varepsilon^{0}=0.34 \mathrm{~V}, \mathrm{Fe}^{3+}+e^{-} \rightarrow F e^{2+} \varepsilon^{0}=0.77 \mathrm{~V}$. For the galvanic cell at $25^{\circ} \mathrm{C}$, (a) calculate the cell potential at $\left[\mathrm{Fe}^{3+}\right]=\left[\mathrm{Fe}^{2+}\right]=\left[\mathrm{Cu}^{2+}\right]=0.1 \mathrm{M}$ (b) calculate the cell potential at equilibrium of the reaction.
(7)	The wave function for the particle in an one-dimensional box is $\Psi(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{\mathrm{n} \pi}{\mathrm{L}} \cdot \mathrm{x}\right)$. Indicate the positions that the particle is most probably found at $\mathrm{n}=3$.
(8)	The electron energy for a hydrogen-like atom (or ion) is $\mathrm{E}=-2.718 \times 10^{-18}\left(Z^{2} / n^{2}\right) J$. (a) What is the energy of the 3p orbital of $L i^{2+}$? (6\%) (b) Describe the state of the electron at $\mathrm{n}=\infty$, i.e. at $\mathrm{E}=0$.
(9)	(a) Draw the Lewis structure for $\mathrm{N}_{2} \mathrm{~F}_{4}$ and $\mathrm{N}_{2} \mathrm{~F}_{2}$. (b) Which one has a shorter N-N bond (Give your reason)? (c) What are the hybridization orbital used for the N atoms in $\mathrm{N}_{2} \mathrm{~F}_{4}$ and $\mathrm{N}_{2} \mathrm{~F}_{2}$.
(10)	For a H_{2} molecule ($\mathrm{H}_{A}-\mathrm{H}_{B}$), write down the antibonding molecular orbital using a linear combination of atomic orbitals (1SHA, 1SHB) and draw the shape of the orbital.
(11)	$\begin{align*} & \mathrm{M}_{(s)} \rightarrow \mathrm{M}_{(g)} \quad 150 \mathrm{kcal} \cdot \mathrm{Mol}^{-1} \quad \mathrm{M}_{(g)} \rightarrow \mathrm{M}_{(g)}++e^{-} \quad 550 \mathrm{kcal} \cdot \mathrm{Mol}^{-1} . \\ & \mathrm{X}_{2(g)} \rightarrow 2 \mathrm{X}_{(g)} \quad 400 \mathrm{kcal} \cdot \mathrm{Mol}^{-1} \mathrm{X}_{(g)}+e^{-} \rightarrow \mathrm{X}_{(g)} \quad-250 \mathrm{kcal} \cdot \mathrm{Mol}^{-1} . \\ & \mathrm{MX}_{(s)} \rightarrow \mathrm{M}_{(s)}+\frac{1}{2} \mathrm{X}_{2(g)} \quad 700 \mathrm{kcal} \cdot \mathrm{Mol}^{-1} . \end{align*}$

	Calculate the lattice energy of $\mathrm{MX} \mathrm{X}_{(\mathrm{s})}$.
(12)	Write down the order (from large to small) foe the ionization energies of $\mathrm{C}, \mathrm{N}, \mathrm{O}$ and your reason.
(13)	$\mathrm{aA} \rightarrow$ Products (initial concentration $[\mathrm{A}]_{0}=0.1 \mathrm{M}$, second order in A , half-life $=20 \mathrm{~min}$). How much time is required for this reaction to be 75% complete?
(14)	 $\left(\mathrm{H}_{2} \mathrm{O}\right.$ phase diagram) (a) What is the phase in region A ? (b) Explain the states of C and E . (c) Give a reason that the melting point of $\mathrm{H}_{2} \mathrm{O}$ drops as the pressure is increased.
(15)	(a) Draw the body-centered cubic unit cell for lithium. (b)How many atoms are there in the unit cell? (c)Calculate the percentage of the space that is actually occupied by the lithium atoms.
(16)	(a) Hg in a glass tube has a convex meniscus. Why? (b)Why glycerol has an unusually high viscosity? (c)Diamond is hard, while graphite is soft. Why?
(17)	Write the English names for the following compounds. (a) (b) (c) Draw the structure for the following compounds. (d)ethanol (e)2-aminopropane. (f)Draw the two monomers of 6,6-nylon,-($\left.\mathrm{NH}-\left(\mathrm{CH}_{2}\right)_{6}-\mathrm{NH}-\mathrm{C}(\mathrm{O})-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{C}(\mathrm{O})\right)_{n}$ -
	$\begin{aligned} & 0.30 \log _{3}=0.48 \ln 2=0.7 \ln 3=1.1 \ln 5=1.61 \\ & \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1} \end{aligned}$

